Logo for Vibrationdamage.com

 

Vibration 101

 Home Up Vibration 101 Is Damage Possible? Pre-Construction Vibration and Damage Vibration Potential Pursuing A Claim Vibration Monitoring Non-construction Vibrations Consequences and Prevention More Information Closing Thoughts

 

Home
Up

Every one of us experiences vibrations constantly. If we are not hearing-impaired, the sounds we hear are vibrations in air. The waves in a pool, lake or the ocean are vibrations in water. We all feel that we understand what the term "vibration" means, because we are so familiar with various forms of it. However, many people may not be aware of what vibration means in the technical sense, especially when it comes to ground vibrations. Because an understanding of vibration in that sense is important for what comes after in the CVDG, we will undertake on this page to provide some definitions and examples that provide a better, though mostly non-technical, understanding of the properties of ground vibration.

Vibration in Physics

A vibration in the scientific sense is a passage of energy that causes oscillations (movements) about an average position in the particles or molecules which make up the material. Low intensity vibration passages produce no permanent change in the position of particles making up the vibrating material. A vibration must travel in some physical material. In that respect, it differs from visible light and other forms of "electromagnetic radiation" (X-rays, radio, ultraviolet, etc.), which can move through total vacuum.

Introductory physics often talks about "ideal materials" in which vibrations, once started, persist indefinitely. Vibrations in "real materials" eventually fade away due to damping effects, which ultimately convert the vibration energy to heat. You can show the effect of damping just by tapping a glass; initially the sound is relatively loud, but dies away quickly because the energy of the vibration is lost mostly to creating the sound you hear when you tap the glass. Some of that energy also goes into producing a very slight temperature increase in the glass itself. This is the reason that articles that undergo continuous vibration become warm or even hot. The repeated vibrations impart more and more energy to them, which appears as heat (a faster and more disordered movement in the molecules of a substance). The conversion of the motional energy of vibration to the disordered energy of heat is an example of the operation of the famous Second Law of Thermodynamics, which says that entropy (a measure of the amount of disorder in a system) tends to increase over time.

Vibrations and Waves

The vibration of water to form waves shows one of the prime properties of vibrations, that they move as repeated "displacements" (i.e. changes in position) in the particles or molecules which compose the material. Waves in water are relatively simple, in part because water is pretty much the same everywhere in the local "neighborhood" and has relatively low damping. We can see waves on water, but visualizing vibrations in other materials requires specialized equipment (e.g. a microphone and an oscilloscope or computer for sound, a seismograph for ground vibration).

In real-world materials, vibration waves often look different, both in shape and intensity, along the three different directions (up-down, back-forth, side-side). Scientific seismographs are designed to record the vibrations in all three perpendicular dimensions at the same time. These differences are also important from the damage standpoint; vibrations in the side-side ("transverse") and back-forth ("longitudinal", sometimes seen as "radial") directions cause potentially damaging shear (differing directions or speeds of movement) within structures. The up-down ("vertical") movement is usually less damaging, because structures are built to withstand vertical forces. The seismograph trace at right above shows the vibration traces for an impact on the ground. A close examination will show that the traces for the three axes of measurement are similar, but differ in detail both in intensity and specific shape.

Simple waves can be characterized by something called the "frequency", usually quoted in Hertz (Hz). It is just the number of wave peaks passing a given point per second. You can see mathematical sine waves of different frequencies, but the same size, in the diagram at right. The wave sin (1/2x) has half the frequency of sin (x) (the sine wave from high school geometry and algebra), while sin (2x) has twice the frequency.8 Lower frequency waves look more "spread out", while higher frequency one look more densely packed. Physical waves with higher frequencies carry more energy per unit of time than those with lower frequencies.

Most vibration waves are not comprised of a single frequency, but are the sum of multiple waves of different frequencies and sizes. Such complex waves can be analyzed mathematically to reveal that they have multiple "frequency components", which, when added together, make up the complex wave seen.  The frequency components of a given complex wave can be extracted from the shape of the wave using a minicomputer (personal computer or tablet) running a "Fast Fourier Transform" program. More discussion about vibration frequencies and how they are determined from seismograph data is found on the CVDG page, Vibration Frequencies.

Vibration components with different frequencies travel differently in materials, leading to changes in the overall vibration shape and frequency distribution with distance. If you have a sound system in your home, you know that the deep bass notes (low frequency) travel further than the high notes (high frequency). The same thing happens in ground vibration. Unlike your home sound system, the ground vibration frequencies of most concern and interest are not those that can be heard well by most people; they are more felt than heard. Typically, construction vibrations have components which range in frequency from about 100 Hz down to below 10 Hz. Ground vibration frequencies below 40 Hz are the ones of most concern in causing damage.

Sound vibrations and ground vibrations are typically very complex in their wave structure, being comprised of multiple components of different frequencies. But, they still look like waves, albeit seemingly irregular ones, when visualized with the proper equipment (see the illustration above for a seismograph trace of the wave structure of a single short ground vibration caused by impact on the ground). A more detailed description of vibration phenomena can be found in almost any college-level physics text.3

Ground Vibration

Ground vibration can be either natural (earthquakes) or man-made (blasting, construction, equipment, etc.) in source. In both cases, "seismographs" (see blasting seismograph example at left) are used to record the ground vibration. To accomplish this meaningfully, seismograph detectors must be firmly anchored to the ground (i.e. they must achieve good "ground coupling") so that, as the ground moves, the detector moves in exactly the same way. Without proper ground coupling, seismograph data are meaningless.

Seismographs for earthquake measurement are somewhat different from those used for man-made ground vibration measurements like the blasting seismograph above. In part, this is because they must be able to measure a far greater range of ground vibration intensities than those produced by human activities. This is the reason that the "Richter Scale", used to describe the intensity of earthquakes, is both "open-ended" (i.e. having no upper limit) and exponential, meaning that every unit increase in Richter intensity indicates an energy involved which is ten times greater than the next lower one. You can learn more about ground vibration measurement and scales in the CVDG Pro section, Vibration Measures. In spite of their design differences, the purpose for both kinds of seismographs is the same - to provide a reliable record of ground movement.

Vibration and Damage

Unlike the "ideal" vibrations discussed above, which involve movement of particles or molecules back and forth about one unchanged position, both earthquake vibrations and some man-made ones can produce permanent changes in the relative positions of "particles" comprising structures. Since these permanent changes are essentially always unwanted, we refer to them as damage. In earthquakes, such damage can be seen as cracks in the ground and, in a large earthquake, collapsed buildings and infrastructure. The larger the vibration, the greater is the potential for these permanent changes in particle positions.

Vibration and Distance

In materials like water, which are the same pretty much everywhere (i.e. "isotropic", "homogeneous"), the vibration intensity decreases with distance approximately according to the same "1/r2" law that Sir Isaac Newton found for both light intensity with distance from the source. The reason for this is fundamentally geometric. As a given amount of energy spreads out from a source, it passes through a "sphere" of continually increasing size. The surface area of that sphere increases proportional to the radius squared (r2) and, over which, the source energy spreads.

Note that the vibration energy spreads in all directions, even though it does not spread equally in all directions, unless the transmission is through a single isotropic material. However, most materials, especially the ground, are anything but isotropic. Different types of rock and soil transmit vibrations differently, in intensity, frequency, and speed. Clay soils, because of their greater coherence, transmit vibration more efficiently than sandy or loamy soils. Even soils with different amounts of moisture can behave differently in vibration transmission.7 Differences in vibration transmission and reflection in rock are pretty well-understood by geologists, particularly those at oil companies. They use such differences in a geophysical technique called "seismic profiling" to reveal underlying rock structures and search for possible oil deposits.

The result of all these and other transmission differences is that ground vibration intensities at the ground surface usually don't follow the "1/r2" law, even though vibrations generally decrease in intensity with distance from the source. Typically, surface vibrations decay more slowly with the distance, r, than 1/r2 (inverse square dependence), sometimes approaching a 1/r (inverse linear) distance dependence. Body vibration waves (see just below) can come close to obeying the "1/r2" law.

Being at a greater distance from a vibration source can't always be seen as much comfort, if your home is close enough to hear the vibration source.6 Indeed, it is well-known that some types of lesser vibrations at a greater distance can be more damaging than those closer in. This is due to a well-documented lowering of the ground vibration frequency with distance; these lower frequency vibrations often have special interactions (called "resonances") with the house structure that other, higher frequency, vibrations lack.

Wave Propagation and Interference

Ground vibrations can take multiple paths from the source of the vibration to a house or a seismograph. These paths can be divided into two basic groups. Some vibration waves travel along the surface. There are several different types of such "surface waves" ("Rayleigh waves", "Love waves", among others) which differ in the specific pattern of particle movement with respect to the overall direction of movement ("propagation") of the wave. Others travel through soil or rock ("body waves"). Body waves can move as surface waves, if they reflect off underlying ground structures and reach the surface. The different paths lead to different arrival times for the vibration waves and different shapes for the two different components. Since the foundations of homes are, for all intents and purposes, at the surface of the ground, surface waves are of most interest in interacting with homes to cause damage.

Vibrations can also be reflected from some underlying soil or rock layers, creating "interference" patterns with later, slower moving, incoming parts of the vibrations. Interference can be easily seen in water as waves reach the shore and reflect back onto the incoming waves, producing a more "jumbled" pattern of waves. In this and all other forms of wave movement, wave peaks and valleys in multiple waves interact to produce a larger or smaller sum wave, depending on whether wave peaks coincide with wave peaks ("constructive interference") or wave peaks coincide with wave valleys ("destructive interference").

The graphic at right shows the interference effects of summing two mathematical sine waves of different peak-to-peak distances (frequencies). For some values of x, the red sum wave has a value of zero, because the positive and negative peaks of the two components (sin(x) and sin(1.4x)) cancel each other, due to destructive interference. For other values, the red sum wave is much larger than either simple wave, due to constructive interference.9 Ground vibration waves can interact in the same manner as these mathematical waves. One of the results of interference effects from vibration waves taking different pathways in ground vibration is that two houses at the same distance from the vibration source can experience very different vibration intensities and histories.10

Vibration velocities are often "estimated" using "scaled distance" or other vibration propagation equations like those proposed by the Federal Transit Administration. These can be valuable when they are validated in the local environment of the vibrations of interest. But, they can be nearly worthless without such validation, because vibration propagation depends strongly on the local ground conditions (including structures present) and geology. Even property landscaping features, natural or artificial, can either dramatically damp (reduce) or amplify ground vibrations relative to the calculated velocities.12

Such vibration estimation equations are often used without any significant validation or consideration of the real complexities of vibration transmission. They, and conclusions based upon them, should be considered as approximate, at best, when used without explicit knowledge of the local vibration "attenuation" (i.e. decrease in ground vibration velocity with distance) conditions.

Vibration propagation equations work best in areas with few or no structures present. However, they are usually used to estimate damage potential to structures, by calculating predicted vibration velocities. Ironically, their use inside towns and cities, where most damage occurs, is potentially prone to the largest inaccuracies, due to wave reflection and interference effects. These arise from reflections of vibration waves from differing underlying rock layers, structural foundations, and even landscaping.12 Such complications can make calculated vibration velocities depart from measured values by a factor of two or more.13 More discussion of vibration propagation equations and the hazards associated with their indiscriminate use is found in the CVDG's Vibration Monitoring and Vibration Regulation sections and, in much more detail, in the CVDG Pro's Calculating Vibration Amplitudes section.

Causes of Man-made Vibration

Most people know that vibration can be produced in many different ways and transmitted through all kinds of different materials. However, most kinds of man-made vibrations, including those caused by people walking on floors in a house, are too small in intensity, last for too short a time and/or affect too small an area to be of much concern in causing damage to a structure. From the standpoint of damage to structures, there are only three important sources of man-made vibration: blasting, operation of heavy equipment and, in some extreme cases, traffic and other transportation.

Some might add oilfield hydraulic fracturing ("fracking") and oilfield underground wastewater disposal activities to this list. Small earthquakes, most below the limit of sensation, have been attributed by some to oilfield activities. Much like those involved in construction, those who do fracking claim that their work doesn't cause damage. There is a good deal of scientific documentation that shows small earthquakes occurring in previously geologically stable areas where fracking is being done, but the cause of those is still hotly disputed. Of course, any technology capable of breaking rock at depth would have to be considered a possible cause for small earthquakes and a matter calling for further study. For more information on vibrations caused by activities other than the three sources listed above see the CVDG's Non-construction Vibrations.

Much of the scientific literature of vibration effects is based on mine blasting, because such damage effects were recognized earlier in mining than in construction. The mining vibration studies provide much useful information on vibration effects, even though they are not directly useful in estimating likelihood of damage from construction activities. Vibrations from construction operations are increasingly being recognized as causes of damage to homes and other structures. In many ways, they are more worrisome than blasting, because of their much longer vibration durations and lower frequency component distributions, magnifying resonance and fatigue effects in a house.

Ground Vibration and Homes

Damage to homes from ground vibration can occur by three basic types of interaction. The first is the direct interaction of the ground vibration with the house, without any of the resonant interactions mentioned above. If a vibration is large enough and lasts long enough, it can do damage even though its frequency composition does not excite directly the natural vibration frequencies of the house ("resonant frequencies"). The second type of interaction with ground vibration is that of ground vibrations with frequencies which overlap the natural vibration frequencies of the home, i.e. those which are "in resonance" with the home. Such resonant interactions are self-reinforcing and, therefore, particularly damaging, if the vibrations last long enough. Resonance effects are discussed in more detail on the CVDG page, Resonance/Fatigue. Finally, the ground vibration can cause damage by bringing about settling of the soil around the home, with corresponding settling of the house foundation. Ground settling effects are often indicated by cracks in the soil around the home, with possible damage to home support structures (slabs, foundations).

Vibration "Safety"

People can feel vibration at much lower levels than those necessary to cause damage in most structures, so the mere presence of vibration doesn't imply that damage is occurring. Because of design and material differences, structures of different types also respond differently to vibration. The result is that there is no one guaranteed "safe" or "unsafe" level of vibration for all buildings.

Because the potential for vibration damage is linked to distance from the vibration source, vibration safety estimates often use quantities called "safe distances". These are more easily measured than vibration peak particle velocities (PPV's), which are considered to be the best indicators of damage potential. They usually are arrived at by considering the likely velocities of vibrations of a given type and relationship to distance.

Thus, "safe distances" are closely linked to vibration standards, which set allowable ground vibration velocities for various activities and structure types. Construction vibration standards allow much lower PPV's than the ones established for blasting. This means that, for a given ground vibration peak particle velocity in a given area, the probability of damage is generally higher for construction vibration than for blasting vibration. For more on this somewhat complicated topic, see the CVDG page, Vibration and Damage. The CVDG Pro section, Vibration Safety, discusses ways in which vibration standards can be used to set "safe distances" from vibration-causing work and the limitations of these approaches.

Mitigating Vibration

Hard materials like rock, or to a somewhat lesser extent, a home, transmit passing vibrations well. If the vibration is sufficiently large or continues long enough, they will be damaged, since all real materials possess limited strengths. One can decrease ("mitigate") vibration transmission and buildup, usually by directing the vibration to a flexible material which can move without damage, and thereby, convert the vibration energy to movement and, ultimately, to heat. There are many examples of this approach in our everyday world.

Many cars use shock absorbers of various sorts filled with gas or liquid. Vibrations from the wheels are transmitted into the shock absorber, where most of the intensity is absorbed in the movement of the fill material. Most car engines are mounted on large blocks of special rubber, which move slightly while the engine is running, absorbing the engine vibrations. These approaches are also used, to some degree, in earthquake-proofing large buildings in earthquake-prone zones, albeit on a huge scale.

Since rock is a good vibration transmitter, a different approach is used in mine blasting to reduce vibrations. Most mines and quarries use small, specifically-patterned, multiple explosive charges to break the rock first, then a second set of charges a few thousandths of a second later to heave the broken rock away from the mine face, where it can be loaded and transported. Since the rock is already broken, the cracks absorb a good deal of the vibration of the second blast. By timing the second blast correctly, one can take advantage of interference effects to reduce the vibration still further. These multiple small blasts occurring within a small fraction of a second are known collectively as a "shot" in the mining industry. U. S. Bureau of Mines publications have specific instructions for mitigation of mining blast vibration, and, by implication, those from construction-related blasting.2,5

Non-blasting construction vibration can be decreased mostly through the use of the correct equipment in the correct way. The Federal Transit Administration's Noise and Vibration Manual provides a list of steps to be taken and procedures to be avoided in mitigating construction vibration.1 Another, more extensive, discussion of such recommendations from the U.S. state of California is also valuable.11 Vibration mitigation in construction settings is further discussed on the CVDG Pro page, Mitigating Vibration. Mitigation techniques are well understood and publicly available for free over the Internet to any contractor. This situation creates a moral, if not contractual and legal, obligation to mitigate vibration, especially from those operations known to be of concern in vibration damage (blasting, pile driving, vibratory compaction, ground impacts generally).

The CVDG

I hope that this short tutorial on vibration and its effects will help you in reading and using to best advantage the rest of the CVDG, in either the free Edition for Homeowners, available in part online or in full in a free downloadable PDF file, or the much more extensive Professional Edition. Although a full scientific understanding of vibration and its effects can be quite involved, the basic concepts are within the understanding of most people. If you have construction-caused vibration damage or are concerned about that possibility, the CVDG will help you understand the issues, evaluate your position and deal with those who may have caused the damage.4


1. Federal Transit Administration's Noise and Vibration Manual, p. 12-12 - 12-13
2. OSMRE Blasting Guidance M
anual, pp. 43-44
3. E.g., Fundamentals of Physics, D Halliday and R. Resnick, John Wiley & Sons, 1970 (and subsequent editions)
4. Many of the pages of the CVDG have footnotes, like the ones on this page, which provide short-form references to scientific literature on various vibration topics or additional information. Full citation information can be found on the CVDG Pro's Cited Literature page.
5.
Explosives and Blasting Procedures Manual, USBM IC 8925, p. 80, et seq.
6. See Construction Practices to Address Construction Vibration and Potential Effects on Historic Buildings Adjacent to Transportation Projects report (National Cooperative Highway Research Program (NCHRP), Project 25-25 (Task 72)), p 31 for a comparable distance recommendation of 500 feet.
7. Because vibration transmission can depend so strongly on soil type and moisture, it should be noted that the vibration data shown in the CVDG are for vibrations in soil classified as "silty sand", intermixed with some small rocks and gravel. The soil is in the U.S. southwestern desert and can be assumed to be dry more than a few inches below the surface. Because of the desert environment, a layer of "caliche" (a hard concrete-like layered deposition of minerals) is found from a few inches to a few feet underground in the soil.
8. If this diagram looks a little like the oscilloscope trace shown in the opening of the old '60's sci-fi series, The Outer Limits, that's no accident. That oscilloscope was showing a set of sine waves of varying frequency much like the ones shown in the diagram.
9. As this discussion implies, both physical and mathematical waves sum "algebraically". Wave peaks add as positive numbers; wave troughs add as negative numbers and can cancel or reduce the positive ones.
10. In one example of vibratory compaction during a road reconstruction job, one house experienced vibrations which were measured at 0.315 in/sec, in violation of the FTA Class III standard for timber-framed homes. Another, a few minutes earlier the same day, slightly further up the same street, essentially the same distance away from the paving operation, and measured with the same seismograph, experienced a vibration of 0.660 in/sec, over a factor of two higher and in violation of all FTA vibration standards and the USBM RI 8507 blasting recommendations for homes with plastered walls. It is likely that these differences were due to vibration wave interference effects. This is a good illustration of the potential hazards (both scientific and structural) of indiscriminate use of scaled distance or other vibration propagation calculations in construction settings.
11. Transportation and Construction Vibration Guidance Manual, CaDOT, 2013, pp 41-45
12. "It was found that anywhere from an appreciable reduction to an appreciable amplification of the vibrations produced can occur, depending upon the geometric parameters of the shaped landscape involved." Reduction in ground vibrations by using shaped landscapes, Persson, Peter, Persson, Kent, and Sandberg, Göran, Soil Dynamics and Earthquake Engineering, volume 60, May 2014, pp. 31 - 43
13. See, fir example, Prediction and Calculation of Construction Vibrations, Mark R. Svinkin, 24th Annual Member’s Conference of the Deep Foundations Institute in Dearborn, Michigan, 14-16 October 1999 (available online).

This page is a chapter from the Construction Vibration Damage Guide for Homeowners (CVDG), a 100+ page free document with over 200 color photos, diagrams and other illustrations. It is available at http://vibrationdamage.com as a series of web pages or in full, web navigation and ad-free, as a downloadable PDF document, with additional content not available on the web. The free version of the CVDG is licensed to homeowners and others for personal, at-home use only. A Professional Edition (CVDG Pro), licensed for business use and with over three times as much content, can be ordered from our Order the CVDG Pro page, usually with same-day delivery. You can comment about this page or ask questions by using our Visitor Comment form. If you would like to discuss vibration damage issues, join us on Facebook.

 

 Home Up Contact Us Site Contents CVDG Overview CVDG Pro - Overview Order the CVDG Pro Information Download Site Policies About

Send e-mail to drzeigler@vibrationdamage.com with your questions or comments about this web site.
www.vibrationdamage.com,  ©Copyright 2013-2017 Vibrationdamage.com
Last modified: 08/19/17